Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Brain Hemorrhages ; 2023 Jun 10.
Article in English | MEDLINE | ID: covidwho-20240863

ABSTRACT

COVID-19, or coronavirus infection, is an acute respiratory illness caused by the corona virus that can develop into a life-threatening form of ARDS. Extracorporeal membrane oxygenation (ECMO) is a highly effective treatment for life-threatening instances. One of the many complications associated with ECMO was bleeding. COVID patients are at risk for intracerebral bleeding due to several factors, including the drug's action on ACE2 receptors, leading to hypertension, as well as hypercoagulability, dysregulated immune response, DIC, and the use of anticoagulants.

2.
Turk J Med Sci ; 51(SI-1): 3301-3311, 2021 12 17.
Article in English | MEDLINE | ID: covidwho-1884486

ABSTRACT

The COVID-19 pandemic has created a major alteration in the medical literature including the sepsis discussion. From the outset of the pandemic, various reports have indicated that although there are some unique features pertinent to COVID-19, many of its acute manifestations are similar to sepsis caused by other pathogens. As a consequence, the old definitions now require consideration of this new etiologic agent, namely SARS-CoV-2. Although the pathogenesis of COVID-19 has not been fully explained, the data obtained so far in hospitalized patients has revealed that serum cytokine and chemokine levels are high in severe COVID-19 patients, similar to those found with sepsis. COVID-19 may involve multiple organ systems. In addition to the lungs, the virus has been isolated from blood, urine, faeces, liver, and gallbladder. Results from autopsy series in COVID-19 patients have demonstrated a wide range of findings, including vascular involvement, congestion, consolidation, and hemorrhage as well as diffuse alveolar damage in lung tissue consistent with acute respiratory distress syndrome (ARDS). The presence of viral cytopathic-like changes, infiltration of inflammatory cells (mononuclear cells and macrophages), and viral particles in histopathological samples are considered a consequence of both direct viral infection and immune hyperactivation. Thromboembolism and hyper-coagulopathy are other components in the pathogenesis of severe COVID-19. Although the pathogenesis of hypercoagulability is not fully understood, it has been pointed out that all three components of Virchow's triad (endothelial injury, stasis, and hypercoagulable state) play a major role in contributing to clot formation in severe COVID-19 infection. In severe COVID-19 cases, laboratory parameters such as hematological findings, coagulation tests, liver function tests, D-dimer, ferritin, and acute phase reactants such as CRP show marked alterations, which are suggestive of a cytokine storm. Another key element of COVID-19 pathogenesis in severe cases is its similarity or association with hemophagocytic lymphohistiocytosis (HLH). SARS-CoV-2 induced cytokine storm has significant clinical and laboratory findings overlapping with HLH. Viral sepsis has some similarities but also some differences when compared to bacterial sepsis. In bacterial sepsis, systemic inflammation affecting multiple organs is more dominant than in COVID-19 sepsis. While bacterial sepsis causes an early and sudden onset clinical deterioration, viral diseases may exhibit a relatively late onset and chronic course. Consideration of severe COVID-19 disease as a sepsis syndrome has relevance and may assist in terms of determining treatments that will modulate the immune response, limit intrinsic damage to tissue and organs, and potentially improve outcome.


Subject(s)
COVID-19/immunology , Cytokine Release Syndrome , Inflammation , Lymphohistiocytosis, Hemophagocytic , Sepsis/complications , Chemokines/blood , Cytokines/blood , Humans , Lymphohistiocytosis, Hemophagocytic/immunology , Pandemics , SARS-CoV-2 , Sepsis/blood
3.
Crit Care Explor ; 3(8): e0517, 2021 Aug.
Article in English | MEDLINE | ID: covidwho-1393346

ABSTRACT

IMPORTANCE: Recent evidence suggests a multilevel inflammatory syndrome as a driving factor in some of the most severely ill coronavirus disease 2019 patients with overlapping features to other hyperinflammatory or autoimmune diseases. Therefore, plasma exchange is considered as potential therapy in these patients. OBJECTIVES: We characterize the longitudinal therapeutic efficacy and safety profile of plasma exchange in critically ill patients with clinical and laboratory evidences of coronavirus disease 2019-related immunopathology. DESIGN SETTING AND PARTICIPANTS: A retropsective case-control study of critically ill coronavirus disease 2019 patients treated with plasma exchange at Heidelberg University Hospital between March and December 2020. Plasma exchange-treated patients were compared with coronavirus disease 2019 patients on standard therapy matched for age, gender, disease severity, and features of hyperinflammatory syndrome. MAIN OUTCOME AND MEASURES: Mortality rate and course of clinical and laboratory parameters in response to plasma exchange were assessed in coronavirus disease 2019 patients and in patients on standard care. A plasma volume of 50 mL per kg body weight or a maximum of 4 L was exchanged. RESULTS: In total, 28 critically ill coronavirus disease 2019 patients were treated with a median of three plasma exchange procedures per patient. No relevant complications occurred during plasma exchange therapy. Inflammatory and biochemical markers of end-organ damage and endothelial activation were significantly reduced following plasma exchange together with normalization of body temperature, improved pulmonary function, and reduced vasopressor demand. Most importantly, these improvements were maintained after the last plasma exchange. In contrast, no such effects were observed in the control group, although baseline clinical and laboratory parameters were comparable. Kaplan-Meier analysis showed improved 30-day survival in the plasma exchange group compared with the control group (67.9% vs 42.9%; p = 0.044). In a multivariable analysis, the hazard ratio for death was 0.27 (95% CI, 0.11-0.68; p = 0.005) with plasma exchange versus standard care. CONCLUSIONS AND RELEVANCE: Our data provide further evidence for plasma exchange as a novel therapeutic strategy in a subset of critically ill coronavirus disease 2019 patients by potentially reversing the complex coronavirus disease 2019 immunopathology. Randomized controlled trials are underway to confirm these positive results.

4.
EBioMedicine ; 70: 103500, 2021 Aug.
Article in English | MEDLINE | ID: covidwho-1322074

ABSTRACT

BACKGROUND: The outbreak of Coronavirus disease 2019 (COVID-19) caused by SARS-CoV-2 infection has become a global health emergency. We aim to decipher SARS-CoV-2 infected cell types, the consequent host immune response and their interplay in lung of COVID-19 patients. METHODS: We analyzed single-cell RNA sequencing (scRNA-seq) data of bronchoalveolar lavage fluid (BALF) samples from 10 healthy donors, 6 severe COVID-19 patients and 3 mild recovered patients. The expressions of SARS-CoV-2 receptors (ACE2 and TMPRSS2) were examined among different cell types. The immune cells infiltration patterns, their expression profiles, and interplays between immune cells and SARS-CoV-2 target cells were further investigated. FINDINGS: Compared to healthy controls, ACE2 and TMPRSS2 expressions were significantly higher in lung epithelial cells of COVID-19 patients, in particular club and ciliated cells. SARS-CoV-2 activated pro-inflammatory genes and interferon/cytokine signaling in these cells. In severe COVID-19 patients, significantly higher neutrophil, but lower macrophage in lung was observed along with markedly increased cytokines expression compared with healthy controls and mild patients. By contrast, neutrophil and macrophage returned to normal level whilst more T and NK cells accumulation were observed in mild patients. Moreover, SARS-CoV-2 infection altered the community interplays of lung epithelial and immune cells: interactions between the club and immune cells were higher in COVID-19 patients compared to healthy donors; on the other hand, immune-immune cells interactions appeared the strongest in mild patients. INTERPRETATION: SARS-CoV-2 could infect lung epithelium, alter communication patterns between lung epithelial cells and immune system, and drive dysregulated host immune response in COVID-19 patients. FUNDING: This project was supported by National Key R&D Program of China (No. 2018YFC1315000/2018YFC1315004), Science and Technology Program Grant Shenzhen (JCYJ20170413161534162), HMRF Hong Kong (17160862), RGC-CRF Hong Kong (C4039-19G), RGC-GRF Hong Kong (14163817), Vice-Chancellor's Discretionary Fund CUHK and CUHK direct grant, Shenzhen Virtual University Park Support Scheme to CUHK Shenzhen Research Institute.


Subject(s)
COVID-19/immunology , Epithelial Cells/immunology , Inflammation/immunology , Lung/immunology , SARS-CoV-2/immunology , Signal Transduction/immunology , A549 Cells , Angiotensin-Converting Enzyme 2/immunology , COVID-19/virology , Case-Control Studies , Cell Line , Cell Line, Tumor , Cytokines/immunology , Humans , Inflammation/virology , Killer Cells, Natural/immunology , Lung/virology , Macrophages/immunology , Neutrophils/immunology , Respiratory Mucosa/immunology , Respiratory Mucosa/virology , Serine Endopeptidases/immunology , T-Lymphocytes/immunology
5.
Ann Med Surg (Lond) ; 60: 434-437, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-921815

ABSTRACT

INTRODUCTION: Novel Coronavirus disease 2019 or COVID-19 has rapidly spread throughout the world and has become an unprecedented pandemic. It has a vast spectrum of clinical presentations and can affect various organs. Rarely, it has been reported to cause acalculous cholecystitis in a non ICU setting patient. CASE PRESENTATION: Here we report a rare association of COVID 19 with acalculous cholecystitis in a 40 years old healthy woman. She developed fever, malaise, generalized body weakness, and right hypochondrial pain after fourteen days of COVID 19 infection, raising the possibility of Post COVID dysregulated immune response resulting in acalculous cholecystitis. She was managed conservatively with broad spectrum antibiotics. DISCUSSION: Acalculous cholecystitis primarily occurs due to the gall bladder's hypomotility and most commonly seen in critically ill patients such as severe burns, mechanically ventilated patients, and prolonged parenteral nutrition. The management depends upon treating the underlying pathology and, in some severe cases, may need surgical intervention as well. Up to our knowledge, COVID 19, causing acalculous cholecystitis, is a rare association described only in a few critically ill patients but not in young, healthy patients. It can be attributed to the body's dysregulated immunological response against the virus resulting in systemic inflammation. CONCLUSION: Currently, there is are no clear guidelines for managing acute cholecystitis in COVID-19 patients. It depends on the patient's clinical state and disease severity. We aim to highlight the importance of early diagnosis and management in such clinical scenarios to avoid fatal complications.

SELECTION OF CITATIONS
SEARCH DETAIL